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ABSTRACT

Results are obtained dealing with the exact and the approximate
representation of a function F as a superposition , in designated formats ,
of functions of fewer variables. Two main cases are considered . In the
classical nomogra phic case , discussed in Sections 5, 6, 7 , one seeks
criteria for deciding if a function can be expressed in the form
f( p( x )+4 i (y) ) ,  or as a uniform limit of such functions. The second case ,
discussed In Sections 2 , 3, 4, is also related to the solution of Hu bert ’s
13th problem , and deals with the format F(x) = f(Ø(x ) ) where x lies in
an n-cell I and 0 is a real valued continuou s function on I , and I
is a function on R taking value s in a chosen normed space e . The
use of these criteria is illustrated with severa l specific functions.

Since each format is associated with a specific partial different ia l
equation , the results raise questions about the nature of the uniform
closure of the C°° solutions of such equations. Section 3 may also have
more genera l interest since it shows that every continuous real function
on an n-cell must share a certain universal property related to the metric
dispersion of its level sets.
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t.

APPROXIMATE COMPLEXITY AND FUNCTIONAL REPRESENTATION

R. C. Buck

1. Summary

In the last four decades , there has been a growing interest in the

theo ry of functional complexity, fo cussed initially on the problem of

representing a given function as a superposition of functions of fewer

variabl es , and stemming from the challenge of Hu bert ’s 13th problem .

N ot to be overlooked , however , are the earl y pa pers of Nina Bary dealing

with representabi lity of measurable and continuous functions [4 J  and the

persistent interest in Russia and elsewhere In nomography and the use of

mechanical linkages to generate specific functions. [15] This has now

taken on additional interest with the advent of the computer and the in-

troduction of new freedoms and new constraints; for example , compo sition

is a faster  operation tha n multiplication .

Many of the basic questions have been answered by the work s of

Vitu shkin , Arnol !d and Kolmogoroff , ( 2 3 ]  [l }  ( [ 3 1 .  In particular , the

former has shown that the number n/p is a convenient Index to measure

the total complexity of the class of functions of n variables that have

Continuous derivatives of orders up to and Including p - By a category

argument , one can show that there are functions not representable by

composition of functions of lower compIex~ty. (See the excellent accou nt

of this  in Lorert tz [14] ). If only continuity is required , corresponding to

p = 0 , the Vitushkin index is no longer useful.  One basic question ,

Sponsored in part by the United States Army under Contract No. DAAG29-
75-C-0024 and the National Science Foundation Grant MPS 75-06687.
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posed in a special case by Hu bert , is answered by the Kolmogoroff resul t ,

showing that every continuous function of n variables can be expressed

in terms of continuous functions of one variable , and the single binary

function + . A very accessible proof is found in Hedberg [18]. (See

also [3] [19] [24 ] ).

There are two directions to the present paper. The first has to do

with the development of crIteria for deciding if specific functions are

non-representable In assigned formats. The second has to do with ap-

proximate complexity; clearly, a function that can be uniformly approx imated

by functions of low complexity should also be regarded as having low

complexity.

Most of the space is devoted to two cases , th e classical norn ographic

case in which one looks at F(x ,y )  = 1(0(x) + ~ (y)) ,  and one similar to tha t

examined by ~rnol ’d , in which F(x) = f(0(x)) ,  where 0 is a real valued

function on an n-cell and the values of f and F may be in any normed

spa ce ~ - The latter is discussed in Sections 2 , 3 and 4 , and the former

in Sections 5, 6 a nd 7.

There Is also close contact with some of the work of Doss [8] and

Sprecher [20] [21] who also have made use of the level sets of continous

functions In their study of functional representation. Section 3, dealing

with metric dispersion properties of level sets , may have much more

genera l interest.

Finally, we have stated a number of conjectures to wh ich we have

been led by this study. Some are connected with the behavior of the partia l
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differentia l equations that are characteristic of the function classes con--

sidered; while it Is conceivable that a very smooth function F might be

representable in a given format using continuous urt smooth component

function s, we conjecture tha t F must  itsel f satisfy the associated differ-

entia l equation. This Is confirmed by some of the results in Sections 2

and 4 for polynomials , using facts about the zero s of polynomials in

severa l variables.

Some of these results have been announced in [6]

2. The schema f(0(x , y) , z )

This case , which has been studied elsewhere ([ 1]  , [16] ) is a

suita ble introduction to representability problems. We first set the nota-

tion. Let ~ be an open connected set in R3 
. We write 

~~~~ 
for the

class of real valued functions that are defined in S and have there a rep-

resentation of the form

(I)  F(x ,y , z)  = f(Ø(x ,y ) , z)

where f and 0 are of class C~ on appropriate open sets in R2 
. Thus ,

0 will be those functions for which only continuity Is required , and

Historically, an important step toward the eventual solution of

Huber t ’s 13th was Arno l’d ’ s discovery that the convex hul l  of contained

all continuous functions of three variables [I ]  . It had earlier been observed

by P~1ya that  If f and o were completely unrestricted , then the class of

functions represented by the format (1) was in fact universal; every function

—3—
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F(x, y, z), real valued or not, has such a representation. [16] . One need

only choose 0 as a bijection , mapping R2 onto R . Most of our results

will deal with the intermediate class which properl y contains

and consists of functions of the form (1) where 0 is required to be con-

t inuous but f is entirely unrestricted.

In contrast with the facts mentioned above, the class of smoothly

represented functions , those in for some n >  1, comprise a very

thin subset of the class of all continuous functions. The proof of the

following is routine.

Theorem 1. If F 
~ ~~~~~~~~~ 

then in ~~~, F satisfies the differentia l equation

(2) F F  - F F  = 0 .xyz yxz

Conversely, if F satisfies (2) in 5,  then it is locally of the format (1)

in 5 - r’ where r is the set where F F = 0
— ‘ x y

Corollary: Any function in 
~~~~~) can be approximated locally, uniformly

on compact sets, by functions in which satisfy equation (2) .

We next seek a weaker characterization theorem that does require us

to deal with functions that  are twice differentia ble . As a first step, observe

that  Theorem I can be restated. For fixed z , z = c, consider the planar

mapping T defined by

F(x ,y , c)
(3)  T: (

v =  F~
(x ,y , c)

Then , equation (2) is the same as 8(u , v)/8(x ,y )  = 0 , and thus the

-4-



criterio n gI\ ’rm in Theorem I for F to belong to becomes the statement

tha t  the  mapping T is everywhere locally singular , for each choice of c

This  observation leads in turn to a C characterization . Given a

func t io n F(x , y, z)  of class C on ~~~~ , which for simplicity we take to be

an ope n box X X Y X Z , take c1 and c2 in Z and then define a planar

mapping T by

r u F(x ,y , c1)

T:
L V  

= F(x ,y , c2 )

Theorem 2 . If F 
~ ~~~~~~~~~~ 

the n the mapping T given by (4)  is locally

singular in X X Y for every choice of c1 and c2 in Z in the sense that

a (u , v ) ’a ( x ,y )  = 0 . Conversely, If T is locally singular in X X  Y for

all choices of c1, c2, then the function F is locally representable in the

form (1) in the set (Q -

To prove the second half , let (x0, y0, z0 ) be a point where F F �  0

The hypothesis on T then implies that there is a function 13(x , y) ,  defi ned

and non-zero on a neighborhood of p0 = (x0, y0 ) such tha t F ( x , y . z)  -

~3(x, y) F(x , y, z) = 0 for all z near z0 and all (x , y) near p0 . Let

0(x, y) be a solution of the equation - 
~
30y = 0 near p0 . Then , one

finds that there exists a function f such that F(x , y, z) = f(0(x, y), z) for all

z near z 0 and all (x , y) near p0

This elementary result is sufficient  to show that specific functions

(e .g .  xy + yz + xz or x2y + y2z + z 2x) do not belong to the class

locally .  However , th is  does not mean that such functions could not belong

— 5 —
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to either of the larger classes or . Although each function

mentioned is in C~ . it might possibly be representable in the form ( 1)

with non-smooth choices for f and 0 . The next resu lt , which i s a part ial

characterization of these larger classes , a llows one to settle this  question ,

and in turn can be extended to handle the un iform closure of either

or

Before proceeding , it is helpfu l to recast the origina l problem. Instead

of considering a function F from X X Y x Z into R , it is equivalent to

regard F as a mapping from XXY Into the function space C[ ZJ , which

may as well be replaced now by any formed space ~ . The problem of

representing F in the format F(x , y, z) = f(0(x , y), z) Is replaced by the

simpler format F = f 0, and becomes a familiar factoring prob lem. Given

F, a mapping from X x Y into e ,  do there exist a real valued function ~
and an ~ -valued function f for wh ich the following diagram commutes ?

X x Y  ~

(5)  / f

If no restrictions are placed on 0 or f , then the answer is aff irmative for

arbitrary F , merely by taking 0 as a bij ection from X x Y into R

However , if 0 is required to be continuous , the n th is is not the case. We

sa y tha t a su blevel se t for a func tion is one on which the function is constant.  
.

Clearly, from (5) , any set E that is a sublevel set for 4, must also be one
for F . Thus , any universal property of sublevel sets of real value continuous

-6—
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functions on X X Y will also hold for certain subl evel sets of any repre-

senta ble F

Lemma 1. Let 4, be any real valued continuous function on an n-cell S

n >  2 . Take any p0 ~ S . Then, either ~ is locally consta nt at p0

or every neighborhood of p0 contains a non-countable collection of d is t inc t

sublevel sets, each of which is non-countabl e.

For , if 0 is a convex neighborhood of p0 on which 0 is not con-

stant , we may choose p 1, p 2 in 9 with 0(p1) * 4,(P2 ) and any number c

with 0(p1) < c < 0(p 2 ); then , every arc in 9 from p1 to p2 contains a

point on the c-level set for 0

Applied to the representability problem , thi s yields the following s imple

criterion; note that It deals with the weak class ~ in which no restrictionw

is placed on the function I

Theorem 3. Let F be any mapping from an ri-cell S ( n >  2) into ~ which

Is of the form F = f o 0, where 4, is continuou s from S fr it o R . Then,

F must be locally singular In S , meaning that locally, either F is con-

stant. or F has a non-countabl e number of distinct non-countabl e sub-

level sets.

We note that this result is only effective if ~ is larger than R

itself , so that there exist functions F on S to ~ which do not share this

property of the representable functions. For example, applied to the original

class ical problem , we see at once that xy + yz + zx and x
2y + y

2z + z2x

do not belong to the class 
~~~~

, or even to the weak class 
~~~~~

, on any

—7—
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open set since the associated mapp ing F from X x  Y into C( Z] is easily

seen to be at most 2-to-I , and therefore does not have any large sub-

level sets , as required by Theorem 3. In essence, this simple argument

is much the same as that used by P�l ya in [16]

Study of these arid similar examples leads to the following conjecture ,

for which only incomplete evidence has been obt a ined : If F is a polynomia l

that belongs to the weak class on an open set ~~~, then F must satisfy

5 the differential  equation (2) .

Before turning to the problem of approximate representability, arid the

search for criteria that must  be satisfied by any function that is the uniform

limit of functions in 
~~~~~ ,

, or in 
~~~~~

, we must obtain more refined results

dealing with the nature of the level sets of real valued functions 0 defined

on an n-cell with n >  2

3 . Dispersion properties of level sets

Let 0 be a real valued function defined on an n-cell S . For any

rea l number X. ,  the X -level set for 4, is the set Ex of all points p ~ S

with 0(P) X , I. e. 4, ’(k ) . If 0 is not required to be continuous , then

each of these sets E can be finite , and in fact a solitary point . If n >  2

and 0 is continuou s , we have seen (Lemma 1) that infinitely many of these

sets E must be infinite . In the present section , we show that there must

always be one of these level sets that ach ieves a certain minimal dlsper-

sion in S, independently of the choice of 0 . The measure of dispersion

or size which we use is a familiar one related to the notion of metric capacity

-8-
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of sub sets 114] . Given a set E and a number  6 > 0 , we look for p oints

p E tha t  are mutua l ly  separated by 6 , so that  J p . - p, J > o for 1*

Th~ n , ~ (E , 6) is the max imum number of such points that  can be obtained.

If E T S , then n (E , o ) <  n (S , O),  a nd the comparative size of these measure s

the degree to which the set E is dispersed in the set S . If S is an

n-cell in Rn of side L , then n(S , 6) (L/o)~ , a s 6 0

Our main resul t  in this  d irection is the following .

Theorem 4. Let S be an n-cell of side L , and 4, any rea l valued con-

t inuous  function defined on S . Then , for any 6 > 0 ,

(I) if n = 2 and 6 < L/2, 4, must have a level set E

(6) for which n(E , 6 ) >  L/o

(ii)  If n >  3 and 6 < L/ ( l6) , then o must hav e a level set E

for which

(7) n(E , ó) > 

2n— l (L/ Ô) r~/2

The conclusion given in ( I )  is easily seen to be best possible; this

doe s not seem likely for part ( i i) ,  and we conjecture that  the exponent

n/2 can be replaced by n - I . More generally, we conjecture that the

following is true: if 4, is a continuou s mapp ing from a compact metric

space A onto a metric space B , then t~ere is a constant C depending

only on A and B such that 0 must  have a level set E CA for which

ri (E , 6) n(B , 6) > C n(A , 6) , for all suff iciently small 6

\L’hile the proofs for part (I)  and (I i )  are similar , we give them

separately since the conclusions are dif ferent .  Our first proof for part (I )

—9—
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was improved by a suggestion made by Carl de Boor.

Proof of ( i ) .  Let S be a square of side L , and 0 < 6 < L/Z . Choose

k [ L/ o] and consider k +  1 evenly spaced v ertical segment s a~ , a~,

in S, each of length L - Let a- be the real interval 4,(a’.)

and suppose that  fl a- is non empty. If X lies in each a- .

~~ 

then we can

choose p . ! so that 4 ,(p .)  = X , and we have found k+  1 p oints  in the

\. -level set for 0 which are mutu al ly separated by 6 - Thus , xi( E >~ , 6)

> k+ 1 > L/o . if fl a-~ is empty, the n some pair of intervals , say a-

and a- , , are disjoint. Choose X so that 4,(q1) < X. < 4,(q2 ) for all q1
in and q 2 in a , . Construct k + l  horizontal segments 

~~~~~
, ~~~~~ 

~~~~~~

in S evenly spaced and each intersecting the vertical segments a , and

(See Figure 1). Choose p1 E 
~~~

, so that 4 , (p .)  = ~. . These again are

point s in the X -level set E
~ and are mutua l ly  separated by 6 , so that

again n(E
~~,

o ) > L/O

_________ 

13~
- 

I
a4

~~ ‘~l a 
•

~~~~~ 

a
5

p 3

— —
~~~~~~~~~~~~~~~~~~~~—

Figure 1
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Proof of (II). Let S be an n-cell of side L with n >  3, and suppose tha t

0 < 6 < L/ ( l6)  - Choose three integers as follows:

k=  [ L/o]
(8)  m = [ (L/ O) n ] where r =

( 9 )  p =  [ L/ (2m 6) ]

(Thus , when n = 3 , m 4 
L/6 and p4 ( L/ o) 3 

. )

Consider k + l  horizontal sheets in 5, each an (n-i)  cell of side

L , parallel and uniformly spaced at distance L/k > 6 . Divide each

sheet into mi ’ ’  small (n—i)  cell s of side L/m . Shrink each of these

by a factor of 1/2 , leaving its center fixed. Each sheet will then con-

tai n a collection of m~~~ disjoint (n-i) cell s of side L/ (2m) ,  and

mutual ly  separated by L/ (2m).  (Figure 2 show s one such sheet , for n = 3 ,

m 4 . )

It is easily checked that L/ (2m) > 6 , using the fact that L/o > 16
2( 1—2/n ) 

- n-l
> 2 . We now have , on all the sheets , a collection of (k+ l)m

small (n- I )  cells a1, each of side L/ (2m) and such that any pair of

points from distinct a1 are separated by at least 6 . Let 0 be a con-

tinuous function defined on S, and let a- = 4,(a
1

) . Suppose first that

11 a- is not empty. Choose X so that  X 
~ 

a- i for all I , and then

p1 ~ 
ai with 4 ,(p.) = . We have therefore found (k+i)m~~~ points in

the )~. -level set of 4, with mutual distance 6 . Accordingly,

6 ) >  (k+ 1)m’~~

—11—
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c

Figure 2

However, from (8),

m >  (L/ Ô) r 
- 1 > ~~

since L/o > 16> 2l/r 
-

Thus , we have shown that

n(E
~ , 

6) > (k+l) (1j  (L/o) ’}~~
1

> (L ) 1 (L ) (n l)r
6 2n— 1 6

>

Suppose now that the intersection of all the real intervals a- is

empty. By Helly ’s theorem , two intervals , say a-~ and a-~~ must be

disjoint .  Choose a real number X so that

( 10) 4,(q1
) < )~ < 0(q 2 )

—12—

- -~~~~~~~ - -- - 
-



for a l l  q
1 in 

~~~

. and q 2 in a~ - Look at a • which is an (n-I )  cell of

side L ‘~~ m ) , and divide  it by a mesh of width ( L/ 2m)/p  = L/ ( Zm p )  to

r - r u u u c e  ( p + l ) f h  p oints  q ,  with each pai r separated by at least L/ (Z mp)  -

Observe t h a t , by ~9) , L / ( 2 m p )  > 6 . Do the same for the second (n —i ) cell

c~~ , producing p c ’n t s  q ,  and then j oin q. to q* by a n ar c  in S so t h a t n o two

points on distirice arcs are closer than 8 ap art . Because of (10),  we can now

ch oose a point p . on each ar c 
~~~

. with 4,(p~) = X . We then have ( p+ l) t
~~

points in the X -Ieve l  set of 4, , mutual ly separated by 6 , and

n(E~~,
a ) >  (~~~1) n l

which by ( 8 ) and ( 9 ) yields

L n — i 1 L n-l 1
• rk (E

~ , 
6) ? 

~2mó ~ n —i n—l2 m

> ri—i (L/ ô) r (n l) (Ô/ L) r(1
~

_ [)

2

~ 2n
1
—i (L/o) f h (o/ L)~~~

2)
~
/’2

> 
1

— 
2n-1

completing the proof of part ( i i )  of Theorem 4.

We note tha t if the more general conjecture given jus t  below the

statement of the theore m were true , then the exponent n/2 would be re-

placed by n-i since i-i(S , 6) (L/6 )’~ and 0(S) Is an interval J for

which n( J ,  6) = 0(1/6) . We have not been able to verify this , nor to

obtain a theorem similar  to Theorem 4 for continuous mappings from an

— 1 3 —
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n—cell into R S with 2 < s < n - 1 . In this  case , the conjecture is that

n (E , 6) (L/ o) f l S

4. The closure of ~w

We now apply the results of the preceding section to obtain criteria

for approximate representabi lity In the class - Let S be an n-cell of

side L , and ~ be a normed space , arid let be the class of mappings

F from S to g which have the form F(p)  = f ( 4 , (p ) ) ,  where 4, is a con-

tinuous real valued function on 5, and f is an arbitrary function from

R to P~ -

Theorem 5. if G is a function~~~ S ~g ~ that can be uniforml y approx-

irnated on S by functions in 
~~~~~~

, the n, G must have level sets that

have arbitrari ly large finite cardinal. Indeed, given 0 < 6 < L/ ( 16) , there

must exist a level set E for G such that

(11) n(E ,ó) > ~~~~~~ (L/6) 11
~
’2

Proof: Given ~ > 0, suppose that there exists F 
~ 

with I F - G i l <

Write F as f e 4, . By Theorem 4 , we may choose a level set E for 4,

such that  E obeys (7 ) .  If p ~ E, th en F(p) = f( X ) , independent of p

so that  F is also a level set for F - Since IF( p )  - G(p) l  < E for all

p ~ S, it follows that E is an approximate level set for G; indeed , if

N Is [Z fl(L/o)~
h /#’2

J , then for each E 0 we can choose N points p ,

in S such that jp 1 - p~J > 6 for 1* j, while jG(p~) - G(p1
)l < Z .

Letting E decrease , and using the compactness of S, we can arr ive at

-14-

_____________________________ _________________



N poi nts {p*} in S with Ip~
’ 
- p~~~> 6 while G(p~ ) = G(p ) . . .  =

G(p~~), and we have found a level set for G obeying ( 11) . Since 6 can

be arbitrarily small , G mu st have level sets with arbitrari ly many points .

Applied to specific cases , this result shows immediately that the

test functions xy + yz + zx and x2y + y2z + z 2x cannot be approximated

3uniformly by functions of the form f(Ø( x , y) , z)  on any open set in R since

they a re at most 2-to-I as mapping s from R 2 Into C [R ]  - More general ly,

the criterion in Theorem S implies that any function in the unifor m closure

~~ ~ w must  be locally singular; every neighborhood must conta in arbitrari ly

large finite sets on which the function Is consta nt . Accordingly, G will

not lie in the closure of if the sets G 1G(p) are uniformly finite.

This fact , together with some properties of the real zero s sets of poly-

nomials , suggests the following conjecture : no polynomia l G(x , y, z) lies

In the closure of for an open set 5 unless G satisfies in G the

eq uation (2) .

The technique used above permits one to use Theorem 4 to estimate

the uniform distance from specific funct ions  G to . We first sketch

the genera l approach , and then i l lustrate  it with one of the test funct ions.

Suppose that G is a function on the square ~2 into ~ such that  G 1G(p )

never contains more than m points. If G is continuous , then for any q

and e > 0, there is a 6 such that if IG(p) - G(q)l < 6, then p is

—l
within € of one of the points in G G(q) . Suppose that we can establish

a uniform quantitative version of this with the following form :

—1 5—
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( 12) If G(p)  - Giq)J < d . then p Is within a distance D = D(d) of

1G G(q) .  fo r all q, where D is a monotone function of d and D(O) = 0

As suming that such a result has been obtained , we can estimate the

dista nce from G to 
~~~~~~ 

. Let h G  - r h  E for some F 
~

Usi ng Theorem 4 . choo se m+l points p . in i2 such that !p~-p 1 I >  L/m

fo r i * j .  and the p . also belong to a level set for F . We will then have

G(p , ) — G(p 1) l  < 2 for all i . Use ( 12) with d = ZE , ~ = and q = p1

and we see that p. will lie withi n D of the set G ’G(p 1) for each I -

H owever, this  set contains at most m points , so that there must exist two

poi nts p . and p . with I * j such that ip .  - I < 2D . Accordingly,

2 D ( Z f ) >  L/m and E > ( l/2)D 1 (L/2m) , givi ng the desired estimate for

the di stance from G to ~ -w

To show how this process works in practice , we apply it to the func-

tion G(x , y, z)  = xy + yz + zx , regarded as a mapping from a square 12

into C[R] ; we take I = [c , c*] where c* 
= c + L , and c >  0 . The

needed step is a version of the required uniform inverse theorem (12). It

is helpful  to note that in the present case ,

G 1 G(a , b) = {(a , b), (b , a)} -

Lemma 2. Let (x , y) and (a , b) be points in the square I~ , with

G(x ,y ) - G(a , b ) I < d  . Then,

(x ,y )  - (a , b) i I ( x ,y )  - (b , a ) I <6~ 2 (c~/L)d

-16-



Pr L~~~:

I G (x , y )  - G(a , b ) I max ~ I xy - ab + (x + y - a - b)z
c< z < c

we have

Ixy - a b +  ( x + y - a - b ) c ~ < d

*Ixy -ab + (x + y - a_ b )c j < d

which im ply

ix + y - a - b i  < 2d/L
( 13) Ixy - a b i  < (c + c*) (d/ L)

Now,

J ( x - y + a  - b)(x-y +b-a) J <

I x + y - a - b h j x + y + a + b I + 4 j x y _ a b l

(2d/ L)(4c *) + 4(c + c*)(d/ L) < 16c*(d/ L)

Now ,

2 l ( x ,y )  - (a , b) 1 2 
= ix + y - a - b 1 2 

+ ix - y+ b - a 1 2

zI (x ,y) - (b,a)1
2
= Ix + y - a - b 1 2

+ I x - y + a - b i 2 .

Set t ing l x + y - a - b l  w , p =  ( x , y ) , q =  (a , b) and q* = (b , a)  we

have

2 2 *,2 2( b p - q I - w / 2 ) ( b p - q l  -w /2)<

lx  - y+ b - aj 2lx - y+ a - bh
2 

< 64(c*d/L)Z

Accordingly ,

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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a nd using (1 3) and the fact that  i2 h as diameter Tz L ,

Ip - q i 2 ip - q~ i~ <~~~~~ (64 (c*) Z 
+ 8 L2 )

< 7Z( c~ d/ L) 2

from which the conclusion follows.

Following the genera l outline given earlier , we may now use t h i s  t r ~

prove the following estimation theorem.

Theorem 6. The function G(x , y, z)  xy + yz 4 zx in C[ i  }, where

I = [c , c+LJ and c > 0, i~~~ separated from the set ~ (I s ) by at  lea st

the distance L 3(c+ L)~~/(96~~2) -

Proof : Suppose that F r with h G  - F h l  < ~ . Choose three points

p . in with J p ~ - p~I > L/2 for 1* j but with F(p 1) F (p2 ) F (p3 ) -

We h ave I G ( p . )  - G ( p ) h  < 2c and , by Lemma 2 with d = 2E

- P~ l I P 1 - P~ I < 6~2 (c
*/LXZd

where c* = c + L and (a,b)* (b ,a) - Since ip . - pj> L/2 we may

conclude tha t  for i �

*
* 24 ’[Z cI p .  - 

~~~ • 21 

L

Using this for j = 2 and for i = 1 and i = 3, we have

L * 1 * 48i2 c~
i

~ 1p 1
-p 3 < ip 1 -p

2 i + 1 p1 — p i <  
L2 ‘

f rom whi ch we obtain C > (96 ,IZ) 1 L h
/c* as stated.

While this estimate is unlikely to be sharp, it decreases with L

-18- 
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in about the way one would expect. It would be of interest to obtain

genera l results  of the form ( 12) to replace the type of ad hoc argument

given in Lemma 2. [ That this is not possible for all continuous func t i ons

F is shown by the trivia l example F(x) = x 3 
- x 2 . }

5. The class of nomographic functions

One of the classical questions of functiona l representabil i ty is

wheth er a given function F(x , y) ca n be given as a simple three scale

nomogram; specifically, are there three function s of one var iable  f . 0, I~J

such that

( 1 4 )  F(x ,y ) = 1(0(x) + 4 , (y) )

such questions , together with the strong interest in nomography promoted

• by d’Ocag ne [15] , gave rise to the original formulat ion by Hilbert  of t he

13th problem , and the solution by Arnol’d and K*~1mogoroff. [1 ]  [ l ~~] -

We continue to use the notation 3 for the class of f u n c t i - ’ns w~t hn

a specific composition format , but this time referring ~n that  given in ( 1 4 i .

As before , 
~ 

are those that are representable with continuous f , 4,, ~
and now refers to those for which 0 and ~ a re continuous . hut I

is unrestricted . Those functions that  are smoothly represented form a very

thin subset of the continuous functions.

Theorem 7 . If F r ~~~~ then in ~~~, F obeys the differential equation

( 15) (F F )(F F — F F ) +  F (F 2 F - F2F ) = 0x y  x xyy y xxy xy y x x  x y y

Conversely, any  solution of ( 15) in G is of the form (14) locally in ~ - F-

where F is the set where F F = 0x y
—19— 
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The proof is rou t ine .  For the converse , if F obeys (15) then in

s - F , we have

F F -F  Fa y xx x yy\
ay F F  ~— 0  -

x y

Locally, we can the n choose a function 4 ,(x) . with Ø’(x) * 0 such that

(F F - F F ) 4, (x) = F F 4 , ’ ( x )y x x  x y y  x y

and have

‘F
L( L ~‘( x)’~ = 0
ax ” F x

Locally, we can then choose 4 ,(y) ari d have

4,’(y) Fx 
- 4 ,’ (x) F~ = 0

a nd neither 4,’ nor ~~~
‘ will vanish at any point in 0 - F - Put

U -r o(x) + 4 ( y ) ,  V 4,( x) - ~(y)  and define G by G(u , v) = F(x ,y) ,  locally.

Since G~ = 0, F(x , y )  = G(u , -) = f(u ) = f(4 , (x) + 4 ,(y ) ) ,  as required.

Corollaty : Any functio F in ~~~G )  can be approximated locally, uni-

formly on compact sets, by functions in ~~ which sat isfy the equatign

( IS ) .

The result  In Theorem 7 says little about the problem of nomographic

representabil ity in the classes for n <  2 or in the weak class

As in the problem studied In Section 2 , it is tempting to hope that if F

i tself  is suff ic ient ly  smooth and belongs to the class on an open set

~ then F will sat isfy (15) in ~ .

-20-



It is aga i n h e l p f u l  to rec ast  the  s i tua t ion  e.s a factor ing problem.

Given F , we ask if the re are func t ions  h and f such tha t  the following

d iag ram c~~mn ut~~s

~1~~) R 2 T~ S —p- R

Here , f is unre stricted , a nd h bel ongs t o the class ~ of cont inuous

funct ions  of the form h( x , y) = 4 ,(x) + ~(y)

Of course , if h could be chosen to be a bijection , R 2 — R , every

func t ion  F is nomogra phic . Such a choice for h could not be con~t inuous

on R2 ; howeve r , it is possibi e to construct a bijection h whose com-

ponent funct ions  4, and ~ are each continuous off a countable (dense)

set -

Theorem 8. Any function F(x , y) can be represented in the form f(~ (x ) + ~( y ) ) -

~1ore general ly,  a ny function F on tr~e u nit  n-cell  I~ ~ -

ca n be wri t ten in the form

F(x 1, x 2 , .  . • , x~ ) =

f lOt x
1

) + (x 2 ) + 44 ,(x3 ) + .. .  +

where 4, is an increasing f~i n c t i  ci , 11 te  [ ( 1 . 1 1  -

Proof: The key to the construct ion ~ h is th e ou servat ion that  each integer

between 0 and - 1 has a uni que expression as a sum of powers of 2;

the r e s u l t i n g  fu nct ion h wi l l  then be a bij ection from [0 , 1] ~ into R

-21—
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and given F we define f as F h ’’ and have F = f • h . The caso n 3

is typical. Let t be any real number , 0 < t < 1, a nd wri te t in

binary form as 
- 

-

t = - t1t 2 t 3 . . . = 2 t ,

where each t . is either 0 or I . To obtain uniqueness , we replace a ny

terminal  string of is by an equivalent expression with terminal Os - We

then define an increasing function 4, by

4,(t) = ~ B~~ t . = . t1t 2 t 3 . . . (octal)

It is evident that 4, is strictly increasing and maps [0 , 1] onto a subset

of [0 , 1/7) . (We choose to set 4,(l) = . 11111. . . (octal) = 1/7

If p (x , y, z)  c ~~~~ set 0(x) = a , 20(y) = b, 44 ,(z) = c and write

each in octal:

a = - a1a2a3a4 .. .  (octal)

b . b1b2 b3b4 . . .  (octal )

c = •c 1c2c3c4 . . .  (octal)

From the definition of 0, we see that  ea ch a , i s either 0 or 1. tha t

each b . is either 0 or 2 , and each c . eith er 0 or 4 - With
i i

h(x , y, z) = 4,(x) + 24 ,(y) + 40(z) = a + b + c , we see that

h(p)  = . d1d 2d 3d 4 . .  - (octal)

wh ere each digit d~ is just a , + b~ + C1, no carrying being necessary

except in the special case x = y = z = 1 . Furthermore , since each

integer in (0 , 1, 2 , .  . - , 7} has a unique expression as sum of three

—22-



selections from the set (0 , 1, 2 , 4}, dis tinct points p = (x , y, z)  yield

dist i nct values h(p)  -

We now turn to the class of funct ions tha t are cont inuous ly

representa~ ie , an d the wea ker class 
~~~~~

, and ask for criteria that

d i s t ingu i sh  their members fro m other funct ions .  Referring back to the

mapping diagra m (16) we note that any such characterist ic properties of

a representa ble function F ~ ~ must  arise from the special nature of

the conti nuous functions h . The functions h (x , y) = 4 ,(x) + ~(y)

defined on a rectangle S = I x J C R2 form a proper closed subs pace V

of C[ S] . If P1, P2, P 3, P4 are the successive vertices of a rectangle

that lies in 5, th en the ~i 1ternating sum of point masses at the points P .

is a fu nctional that annihilates V . If h € V , the n

(17) h( P1
) - h (P 2 ) + h( P3 ) — h(P 4 ) = 0

Conversely, if h c C[ 5] and if (17) holds for all choices of the points

P ., then h e V - This property is readily extended to any chain of Zn

points P~ which are vertices of a closed polygon in S with edges that

are successively vertica l and horizontal. (See Figure 3 and [5 ]  -

We next examine the level sets of functions h c ~
j . Any set that

is a subset of some particular level set for a function g will be called a

sublevel set for g; thus , a h-sublevel set for g is a set on wh ich g

is constantly ~ . The V sets In S will be the collection of all sets that

are sublevel sets for any of the functions h ~ . That some of these

—23 —
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P4 P 3

P S

P

t
P1 

P2

Figure 3

sets a re complicated in structure can be seen by considering an h for

which the component funct ions 0 and ~
j  are continuous but everywhere

non-di f ferent ia  ble.

Suppo se that F e ~ w~~~’ with F = f • h • If E Is a sublevel set

for h in S , then E Is a sublevel set for F . Our next result Is a simple

converse of this which turns out to be quite useful ; because of It , any

property th a t  is common to all the ~ sets must also hold for certain (and

sometimes al l)  of the level sets of a representable function F

Theorem 9. Let F c 
~~~~~ 

• Then, thin connected sublevel sets for F

in S must be V sets. Specifically, if F = f • h on S = I x j, and

is the X -level set for F in S, and E is any subset of E
~ 

that

-24-



is connected and contain s  no interior point of E~ , then E is a sublevel

set fo r h -

Proof: Let h ( E )  = a- C R  . If a- is a single point , E is a sublevel set

for h Suppose a- is an interval. Since F is constant on E , f ( t )  =

for all t e cr - Choose p0 ~ E so that  h (p 0 ) is interior to a- , and

then a neighborhood ~ about p0 so that  h( s) C a- , usi ng the cont inui ty

of h - Ciearly . we would then have F(p )  X for all p c ~~~~ , a nd p0
would have  bee n interior to E

~
We rema rk that if F is continuous , the set E cou ld be taken a s

any c n ~i i t ~~ f l t  of the boundary in S of the set of points p with F ( p ) >  ~

A tr ivial  i l lustrat io n may be helpfu l .  Suppose that a function

h(x . y) = ~~ ) + 4 (y) is constant on a vertical segment a in S = I X J

Clearly, ~ is constant on a subinterval J 0 CJ ,  a nd h will then also be

constant  on every segment in S parallel to a - By virtue of Theorem 9 ,

if F ~‘ ~~~( S) and is not constant on any open set in S . then F must

sh are th is  property; if  F is constant on vertica l sPgment , it must  be

constant  on each parallel segment . This shows immediately that functions

su ch as (x - c) 2 e~ do not belong to the weak class 3 (S) on any open

rectangle S that contains a portion of the line x = c . (In passing,  we

not e that  the funct ions  (x - c) 2 G(y) ,  with G of class C2 , sat isfy the

di f fe rential  equat ion (15) everywhere.

Arnol ’d noted a specia l case of this in [ 2 ]  In connection with the

fu nction F (x , y) = xy, wh ich --- for the same reason --- does not belong

~
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to the clas s on any open set containing the origin. However , in

th e open f i rs t  quadrant , we note that this function is exp(log x + log y)

whi ch belongs to ~ . This same example shows that  func t ions  in the

class 3 can converge uniformly to functions that are not even in

For example .

y) = (x2 + ) e1’

belongs to ,~ R 2 ) , and converges uniformly on all compact sets to

x 2e~’ which doe s not belong to 
~ 

on any open set containing a point

of the Y axis.

To apply Theorem 9 further , we need other characteristic properties

of ~ sets. We can obtain one by using the annihi la t ing property of the

li near functionals given by (l7) . also used by Arnol d in a similar fashion in

[2 ]  -

Lemma 3. If E is a level set for h ~ V in the rectangle S I X J, and

E conta ins any three of the four points (a 1, b .) ,  i , j = 0 , 1, then E

contains the fourth.

Proof: If 
~~~~ 

= (a ., b~)~ then

h(P 0 ) - h(P 1) + h( P3
) - h(P 2 ) = 0

so that if , for example , h (P 0 ) = h(P 1) = h (P 2 ) = X , then h(P 3 ) =

Combining this with Theorem 9 , we have :

Theorem 10. If S = I X J, and F ~ ~~~ 
if E

~ is the X -level set

-26-



for F in S, and If F i s a  connected subset of E
~ containing no in-

0 ten or point of Ex but which contains three of the points (a , , bj ,

i , j = 0, 1, then Ek must contain the fourth point.

For example , F(x , y) = x2 + xy + y 2 does not belong to the class

on the square I x !  < 2 , ‘Y 1  < 2 since it has thin level sets In t~~L

f orm of t i l ted ell ipses that  do not have the four-point propert y described

In Lemma 3 , and Theorem 10. This same argument can be applied to any

of the fu nctions x 2 
+ ~3xy + y 2 w ith p2 

* 4 , and to any neighborhood

of the orig in , thu s showing that none of these functions is locally weakly

nomographic at (0 , 0) . H owever , the pre sen t m ethod does not answer

the qu estion of loca l nomographic representabi lity for these funct ions  at

any point other than the origin , since the four-point property is a globa l

property of a single level line , and at no other point than (0 , 0) do the

level lines of the function x2 
+ xy + y2 converge. [We note in pas sing

that these functions , as ~~~‘~~- 2 , provide an example of functions lying out-

sid e the class 
~ 

but which converge uniformly on compact sets to a

fu nction in 
~ ~~,, 

namely (x + y) 2 
. J

We therefore need another property of the V sets that is more local

in character. We note that such properties must have some refinement

since the level lines of the function xy, which is not in 3 ,  very

closely resemble , l oca lly, the level lines of the function x ä + y~ whe n

6 is very small.
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6. The six-point construction

To obtain the desired property, we return to the class of functionals

( 17) wh ich annihi late  ~4 , and consider one based on six point measures.

Suppose that  six points p , are located as indicated in Figure 4, forming

vertices of a closed polygon with edges alternatingly vertical and hori-

zontal .  Then , for any function h c V , one has

(18) h (p 1) - h (p 2 ) + h(p 3 ) - h(p 4 ) + h (p 5
) - h(p 6 ) = 0

Suppose that h (p 1) = h (p 4 ) and h(p 3 ) h(p6 ) . Then it must follow that

h(p 2 ) h(p 5 )

This means that , given two points on distinct level lines of a function

h in V , a geometric construction will produce pairs of points that must

lie on a third level line. We illustrate this procedure in an especially

simple case. Suppose that we are dealing with a specific function h ~

and we choose two points P1 and P2 with h( P1) * h( P2 ) . Suppose that

the level lines of h containing these points are as shown in Figure 5. If

we construct the dotted lines in the figure , thereby locating the additional

points Q1, Q2, P3, Q3, we see that It is necessarily true that h(P 3 ) = h(Q 3 ) -

Of course , not all functions h wil l have such simple level sets

e. g. , h (x , y) = (x sin x ’) 2 + (y sin y 1)2 
. Howev er, we can show that

the six-point construction described a bove will always work , locally, for

funct ions  h that  obey certain convenient restrictions.

-28-
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Theorem 11. Let h(x , y) = 4,(x) + i 4 ( y )  on the rect angle S = I X J , where

4, and ~4 are Continuous and str ict l y i ncreasing .  Then , the six-point

construct io n applies locally everywhere in S . Speci fv ~ I I ~ , ~ p
0 

is

i no-’rior to S , and = 10 X J0 is a ny rect angular  r’~~~ H~r~ uod of p0
in S . then there is a 6 > 0 such tha t  the six po in t  con s t ruc t ion  can bi~

applied in S0. start i ng wi th any  points P1 = (a , b) a nd P~ = (c , d )  in

such that  I p - p0 j < 6 . and a < C , b < d

Proof: Let p0 = (x 0, y0
) , a n d a s su m e x0 inter ior to the interva l [ci1 , a2 J = 1 0 1 .

and y0 interior to [131~
3 2] = J0 C J. Let s be the smal le st o f t h e posltj ve numb er s

j ó ( a . )  - 4,(x0)!, ~~i( ~~~~~. )  - 44y 0 ) I ,  for i ,j  = 1, 2 - Choose 6 > 0  so that

if I x - x0 1 < 6  arid y - y0 1 < 6 , the n J 4 ,(x) - 4,(x0 ) < s/3 and

- ~~y ) j  < s/ i  . Assume that P1 and P2 have been chosen a s

desc ribed a bove. Then , Ia - x0 1 < 6  and I c - x
0 1 ~

- 6 a n d

0 < u = 4 ~( c ) _ Q ( a ) <s/ 3-f s/3 . Since I b-y 0 1 < 5 , ~(b)  - 4~(p~) > s  - s/3 > U .

He nce , the re Is a un ique  y 
~
‘ such that  y < b and

( 19) 4s(b) — ~(y) u 4 ,(c) — 0(a)

In the same manner , we hav e

0 < v  = ~(d) - 4,(b) < s/3 + s/3

while

0(a 2 ) - Ø ( c ) > s - s / 3 > v  .

Hence , there is a unique x 
~ 

such that

(20) 4,(x) - 0(c) = v = 4~(d) - 4.(b)
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Finally,  we set Q1 (c , y ) , Q2 (x , b) , P 3 = (a , d) and

= (x, y) - All lie in S0. and by ( 19) h (P 1) = h(Q 1), and by ( 2 0 ) ,

h (P 2 ) = h(Q 2 ) - These in turn imply that h(P 3 ) = h (Q 3 ) . ~A similar resul t

holds if 4, is increasing,  and 4, decreasing ]

The reason for considering this  special case lies in the fol lowing

simple result , which permits us to use Theorem 11 for an interesting class

of fu nctions F(x , y), those that are separately univalent.

Lemma 4. ~~~ F be continuous on a rectangle S = I x J, and (a , b) a n

interior point of S such that

(2 1) if x . r I and F(x 1, b) = F(x2, b), then x1 
= x2

(22 )  if y. ~ J and F(a , y1) = F(a , y2 ), then y1 = y 2

If F ~ ~~~( S) ,  then F can be written as 1 o h where h (x ,y )  = ó(x) ‘- 4 , (y)

a nd 4, and 4, are continuous and s t r ic t ly  moriotonic on I and 1. re-

spectively, and ~( a )  = 4 ,(b ) 0 . If , in addition , I = J and r (x , y) =

F (y , x) , then we can take 4, = 4,, with both increasing .

Proof: If 4,(x1) = 4,(x2 ), then F(x1, b) = f(4,(x1) + 4,(b)) 
= f(4 ,(x 2 ) + 4 , (b) )

= F(b. ‘ ,) , so that x1 x2 - Since 4, is continuous and univalent , ó

is moriotonic on I . The same argument applies to 4, . Set Ø0
(x)

4,(x) - 4 ,(a) ,  4i0 (y) = 4 , (y) - 4 ,(b ) ,  f 0(t )  = f(t + ~(a)  + 4 , (b)) ,  and we have

F = f 0 h 0 where h 0(x , y) = 4,0(x) + 
~~~~ 

(y) - Suppose now that I = I

and F Is symmetric. Since F(a , x) = F(x , a),  we can take b = a

Suppose that 0 were increasing but 4, decreasing . We can then choose
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u and v with u — a < v  and 4 ,(v ) = ~ ( u )  - However , we would then

have F(a , u )  = F(v , a)  = F( .3, v) , with u � v - We ca n the refore a ssume

that ~ and 4, are both lncrear.inq . F ina l ly ,  suppose tha t  there is s r

with a K s and 4 ,( s) < ~( s )  - There mus t  exist s0 , a < S
0 

< s , with

= 0(s) . As before . F(a , s) F ( s , a~ = F(a , s0 ), a nd s = S
0 

- Thus ,

0 = 4 , .

This  yields a necessary cond~ii ~~n for weak nomographic representa-

bi l i ty  tha t  - loca l and widely app l icab le .

Theorem 12. Let F r ~ ( S)  where S = I X J , and suppose that F Is

separatel y un iva len t  on S . Then , for any  a and c in I and b and d

in J, w i t h  a - c i  and lb  - d l  s u t f R lent ly small , there must  exist x

and y near a and b , re spectively 1 such tha t

F ( a , b) = F(c ,y )

(23 )  F ( c , d)  = F(x , b)

F(a , d) = F(x , y )  -

This results immediate ly  from the corresponding conditions on the

function h for which F f o h - Note that the conclusion gives three

s i m u l t a n e o u s equations for the two unknowns x and y - The fact that

these ~re not in general solvable for arbitrary F provides a method for

proving that  a specific function F is nowhere locally representable in the

class 
~ 

. Before illustratIng this  with examples~ we append anoth er

generalization, dependent upon F being sym metric.

-32—

- 
~~~~~~ 

-_



T heor~-m l~~. Let F c ~~ ( S) whe re S = I X  I , and suppose that  F is

St p u r d t C l y  u n i v a l e n t  on 5 , and that  F(x , y) = F(y , x) - Then, for any

a a nd ~ in I , ~ ~ b , there exist  values of x , in I , a x < x <
— — 1~~~~~ 0 1

X
2 

< - - .  X m = b , for any m >  I, which solve the m (m -l ) /2  equations

( 2 4 )  F(x ,,  x . ) = F(x , . x , ) 0 < i < j < m—l -j i+l i j + l = —

Proof: As before , we ca n assume that  F = f o h , where h(x ,y )  4 , (x) + 0(y)

and 0 is str ict ly increasing on I . Set d = j4 , (b)  - 0(a ) } /m , an d the n

choose points  x . ~ I w i t h  a = x < x < - . .  < x < x = b so thatm- l  m

- 4,(x . ) d - For any i and j with i < j , we the n have

- 4,(x . )  = 0(x~~1
) -

wh ich impl ies  h( x .+1, x ,) = h(x ., x . +i ), and thus (24) .  We note that (24)

is a system - ) f  r n ( m - l )  ‘2 s imul taneous  eq uat ions  in rn-I  unknowns .  This

imposes a severe restriction on any  specific funct ion F , a nd makes it

possible  to exclude some f -~r ,c t ions  from m e m b e r s h i p  in 
~ 

. Since the

condition applies to any square set S along the diagonal , th i s provides

a criterion for local non-representab ility.

To i l lustrate the use of Theorems 12 and 13 , consider the funct ion

F(x , y) = x2 
+ xy + y2 

. From Theorem 10, we saw that this is not locally

weakly nomogra ph ic at (0 , 0) . We now see that it is locally nomogra phic

nowhere In the first quadrant.  Speci fically, one must show tha t  if

a > 0 , b >  0 , then there exist inf ini te ly  many c , d with a < c , b < d ,

such tha t  the system

— 3 3 —
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c2 + c y + y 2
= a 2 + a b + b 2

(2 5)  x2 + bx + b2 
= c2 + cd +

x2 + x y + y 2 a 2 + a d + d 2

is Inconsistent. Since this is (23) ,  Theorem 12 app lies.

If , instead , we u se (24 ) --- since F is symmetric --- we may take

m = 4 , and then if we show that the system

2 2 2
= a + a x 2 + x

3 x~ = a 2 + ab + b2

2 2 23 x 3 = b + b x 2 + x 2
2 2 2 2x1 + x1x2 + x2 = a + ax 3 + x3

2 2 2 2
x2 + x 2x3 4 - x 3 b + b x 2 + x 2

x~~+ x1x 3 + x~~= a 2 4- a b +  b2

doe s not have a solution for any choice of a and b with 0 < a < b , we

will also have proved that F Is not locally nomographi c .

Of these algebraic tasks , the first  is easier , and therefore preferable.

From (25 ) ,  one derives the relati on

(x - c)(y - b) + (c — a)(d - b) = 0

If c = a + a and d = b 4- j3 , the n one f inds that either c = b , c = -b

or

a(~ + 2a) + b(2~ + a) + a
2 + a~ + = o

none of which are acceptable since 0 < a  < c , 0 < b < d , and (c , d) can

be chosen arbitrarily in a neighborhood of (a , b)

-34 -
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Unfortunately,  ea ch application of Theorem 12 or 13 to test a specific

fu nction seems ad hoc; the method is powerful but tedious to apply.  For

example , to show that  2x 2y + xy 2 is nowhere locally nomographic in the

first  quadrant requ ires that one show inconsistency of the system

2x 2 b + xb2 2c2d + cd 2

2 2 2 22c y + c y  2a b + a b

2 2 2 22x y + x y  = 2a d + a d

(excluding the inadmissible solutions such as x = a , y = d with

a = c , b = d . )

All of these support the following conjecture : a polynomial F(x , y)

will  not belong to the weak class 
~ 

on any open set unless it s a t i s f i e s

the di f fe rentia l equation (15), and can be written as f(4 , (x ) + 4 , (y ))  with

4, and 4, polynomials.

7. The closure of the nomographic functions

The purpose of this section is to obtain characteristic properties of

functions In the closure of the weak class ‘~ (S) where S is a fixedw

rectangle. This will then prov ide a method for showing that specific func-

tions G cannot be approximated uniforml y on compact sets by nomographic

functions f(4 , (x) + 4 ,(y)) where 4, and 4, are continuou s, but I unre-

stricted. Our proofs require that the function C be such that G G � 0x y
on S, which we take to be I X J where I = [a , b] , I = [c , d] . For

convenience , we deal here only with the case in which G >  0 and
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G > 0 on S - It then fol lows that  G is separately strictly monotonicy

in S . a nd tha t  there is a constant M such that  If p and q are points

of S with p << q, (mea ning that  p = (x 1, y1), q = (x 2, y2 ) and

x 1~ x 2 , y1 < y2 ) and I G(p ) - G ( q ) I  < 6 , the n I p - q i  < M o  -

If G lies in the closure of 3 ( S) ,  the n for any ~ > 0 there exists

F r 

~~~~~ 
such that  IC - F !! < E / 2  - F will then inherit some of the

properties of G in a modified form . One can expect certain similarit ies

between the level li nes of F and of G so that the six-point construction

might  be appl ied again.  We first observe that  if p and q lie In S with

p << q. and if F(p)  = F ( q) ,  then I G ( p )  — G(~ ) J  < E and p - q i  < M E

Likewise , if p < < q  and h(p )  = h(q) ,  the n F(p)  = F(q) ,  and again ,

J p  - q < ME . Accordingly, the component functions 4, and 4, that enter

into h mus t  have a weak form of univalence. Suppose that x1 and x2

lie in I and 0(x 1
) 0(x 2 ) . We may assume that x1 < x2 - Then , (x 1, c)

<< (x 2, c), and h(x 1, c) = h (x 2 , c), so th at x1 
- x2 I < M€ . The same

argu ment applies to ~ on J . This suggests a usefu l definit ion.

A continuous real function g on [a, )3] is said to be quasi-monotonic

(q . m.) with gap ~ if g(x)  = g(y)  implies I x - y l  < &  for any x , y  in [a ,~~j .

Observe that  we have jus t  shown that  4, and 4, are quasi-monotonic

with gap ~ = M - Since E can be arbitrarily small , we henceforth

assume tha t  A <  L/6 , where L is the shortest side of S.

Quasi-monotonic functions are almost monotonic on their domain.

They need not be locally 1-to-I , nor do they have to be uniformly close to
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a monotoni function. Howe~ er , they i~ive the  following property.

Lemma 5. If g is q. m. with gap ~ on [
~~, ~

} , g( a)  < g(~3) , ~~~

a K x < y < ~3 with y - x> ~~, th en g(x )  < r j (y )  . In par t icular ,  if

a + .~ < x < - L~~, then g(a) < g(x)  < g(~3).

Proof: If g (x) > g(y), then there ex ists z , a < z < x with g(z) = g(y)

Clearly, Jz - y l  > A which is impossible. The last statement in the

lemma fol l ows by spe cializing x and y -

Thus , when is suff ic ien t ly small and F ~ 3 (S) with h G  - F!!

2, we may assume that F = f o h where h (x , y )  = 0(x) + 4,(y) and

0 and ~ are quasi-monotonic with gap ~ on the intervals I and J

re spectively. As before , we can also assume that  this representation has

been modif ied if necessary so that  ~(a) = i~(c )  = 0 , and A o (h )  > 0

Put B =  4i (d) .

Lemma 6. A > 0  a n d B > 0 .

Proof: Examine the behavior of h (x , y) on the boundary of S - At the

lower left corner , (a , c) ,  it takes the v a l u e  0 , while h(a , d) B and

h(b , c) = A . Since the distance from (a , c) to any point along the upper

edge or the r ight  hand edge of S is greater than A and since all  such

poi nts  p obey (a , c) << p . it follows tha t  h cannot take the value 0

a nywhere on these edges. Si nce A >  0 , A >  0 - If B <  0 , the n there

would have to be a point p on these edges where h(p )  = 0; thus , B >  0

We now show that  the six-p oint construct ion applies to h(x , y) in

the recta ngle S

— 3 7 —
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Theorem 14. Let (u , v)  be any point in S such that  b 2 u  — ( a + b ) h  < 2L/ 3

b 2 v - (c+ d) l  < 2L/ 3 . Then, one of the fol lowin g s ta tements  must  be true:

( i )  there exist x and y in J such that  h(a , x) = h (u c)

h(a , y )  = h ( b , C) . h(b , x) = h(u, y)

(ii) there exist x and y in I such that h(x ,c) h(a.v)

h(y , c) = h(a ,d), h(x ,d) = h(y,v)

Proof: The choice between (i) and (Ii) depends on the comparative size

of A and B . Suppose A <  B . Choose y c J so that 4,(y) = A -

Since u is within  L/3 of the midpoint of I, and since ~~< L/6 ,

a + ~~< u < b - ~~~~~ . Hence , 0 < 4,(u)  < A  . Choose x ~ J so that 4,(x) 0(u)

Inspection then shows that the statements in (i) are all valid. If B < A

a similar argument leads to (ii).

Th is in turn yields the desired criterion for approximate  representa-

bility.

Theorem 1.~~ Let G be continuou s on S I X  J, where I = [ a , b i ~a~i
J = [c , d] . Suppose also tha t G >  ,- and G~ > o on S . o > 0 . Let

(u , v) be any point in S such that lzu - ( a +b) l  < 2 L / i  and 2v - (c +d ) I

< ZL/ 1 , wh ere L is the length of the shorter side of S . If G lies in

the uniform closure of 3 (S) then for any sufficiently small (

[ < Lcr /12 will doJ , one of the followin g s t a t ement s m u s t  hold:

( 1) there exist x and y In J such tha t

I G(a , x) - G(u , c) ! < €

- I IG(a , y )  - G(b,c)l K

IG(b,x) - G(u , y) I <
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4 ( i i )  the re exist x and y in I such that

I G( x , c) - G(a , v) J  <

I G(y, c) - G(a, d)I <~~

b G ( x , d) - G(y , v) I  < (

Proof: Choose ( smal l , a nd F c 3 (5) so that fiG - F !! < /2 - f t (

previou s analysi s applies to F and h must  sa t i s fy  one of the s ta tements

( i )  and ( i i )  in Theorem 14. Since F 1 o h , so must  F , and si nce

G(p )  - F ( p ) J  < ~ ‘2 fo r any p ~ 5, the statements ( i )  and ( i i )  in Theorem

15 hold. The number M in the previou s discussion can be taken to be 2/IT

so that  L/ (6M) = Lo /l2 -

That this result is an effective criterion can be seen by a s imple

illustration. Let S be the square with (1 , 0) a nd (2 , 1) an opposite

ver tices , and take (u , v) = (1. ~~ , - 5) . Then , if G(x , y) = x 2 
+ xy +

stateme nt ( i i )  in Theorem 15 is the assert ion tha t the following system has

a solution for al l  su f f i c i en t l y  smal l

- 1.75 I <

2
(26) I~ — 3 !  < E

I ( x 2 
+ x + 1) - (y 2 + . 5y + .2 5 ) 1  < -

However , if x = il. 75 and y = i3 , the third inequali ty becomes

14. 07287 - 4.116025 ! < c , and (26) cannot have a s imultaneous solut ion

for sma ll € - Hence, x
2 
+ xy + y

2 cannot be approximated un i fo rmly  on

S by functions in the weak nomographic class ~ . In the same way,
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usin g small  rectangles 5, one may verify that x2 
+ xy + y2 is nowhere

locally approx imable by functions from ~ anywhere In the open first

qu a dran t .

F ina l ly ,  we note that this  same approach enables one to estimate

the uni form distance from a function G to the class 
~ w For example ,

from (26 ) ,  construct the function

K(x . y) = 1x 2 
- 1. 75! + hy 2 

-3 ! + Jx~ + x + 1 - y2 - - 5y - .25!

Since K is never 0 on S , it must have a positiv e minimum , ‘y . H ow-

ever , by the argument used in Theorem 15 , if fiG - F I! < E/ 2  for some

F c ~ 
(S), then (26) will have solutions x and y for which K(x , y) < 3

Thus , E > y/3 , and we have obtained a lower bound on the distance from

x2 
+ x y +  y2 to

When I = J and G is also symmetric, so that G(x , y )  = G(y, x)

another approach can also be used, similar to that of Theorem 13. As before ,

suppose that  h G  - F bI  < e/2  where F = f h and h(x ,y )  = ~(x) + 4 ,(y)

on S = [-a , b} 2 , and 4, and 4, are quasi-monotonic and 0(a) = 4 ,(a) 0

0(b) = A , ~(b) B . Even though G is symmetric , it does not follow that

O = - However , if 4,(x) = 4,(y), then h(a, y) = h (x , a) and F(a , y) =

F(x , a) ,  so that J G(a , y)  
- G(x,a)I < E . But , G Is symmetric , so

- G(a,x)b < 
( and Ix - y ( < ME = ~~~~. In particular , it follows

that if A <  B , there i s a  y in I with y > b - ~~ and 4 , ( y ) = A, while

If B < A , there ls an x in I with x > b - ~~~ and Ø(x) = B .  Assume

that  we have A < B; then , for any integer m > 3 , we can choose x~
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and y .  in I w i th  a = x0 
— x1 

< x
2 

. = b a nd a = y0 < y1 <

- - .  y = y so that  0(x . +1
) - 0(x~) = A/rn = ~ (Y~~ 1

) - 4i(Y~) - This

impl ie s tha t  F(x ., y
4-1

) = F(x 4- 1, y , )  fo r all  i and j ,  and thus

G(x ., y .~ 1
) - G(y , x .4-1) J  < - We have thus proved the following .

Theorem 16. Let G be continuous and symmetric on S = [a , b] 2

suppose that  G a nd G are bounded below by a- > 0 on S - Then,

for any 6 -
> 0 -and any suff icient ly small , and any integer m > 3

the re exist points x . a nd y. in I such that a x0 < x1 <

a~~~y0 < y 1 < y2 < . . . , with xm
> b _ O and y > b - o , and

I G ( x ., Y~~1
) - G(y. ,  x . 1 ) I  < E

fo r all i ari d j -

Most of the resul ts  in this and the two preceding sections carry

over to the class of functions of n-variables of the form F(x 1, x2, . . . , x~ )

= f(01(x1
) + O2

(x
2
) + ... + 0 ( X ) )  since they depend mainly  on the class

of a nn ih i l a t ing  functional for the class ~ , which has an immediate

analogue  in th e more general case.

~ Other classes and methods

We once more change our notation so that  a n (S) now refers to the

class of those funct ions F(x , y, z)  which can be represented on the set S

in the form f(~ (x , y) ,  4 ,(y, z ) ) ,  with I , q’ and 4, of class C~ . As seen in

Section 2 , any function F has such a representation if I , q and 4, are

u nrestr icted . However , it is natura l to conjec ture that 30(S) is a
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relatively th in  subset of C[ S] , and that a funct ion such as F0(x , y, z)

xy + yz + xz does not even belong to the closure of ~ (S) where S

is a ny cube in the open positive octant. We are not able to prove th is

much ; the class 30(S) is considera bl y more complex in structure th an

those discussed in previous sections , and much less tra ctable.  The

following elementary result illustrates this fact.

Theorem 17. Any function F in 3 4(S) is the solution in S of a specific

4th order partial differential equation with 55 terms.

Proof: Assuming that F(x , y, z) = f(~p(x, y), 4,(y, z)), we have F = f
1Q1

F 
~l~ 2 + f 24,1, F f 2 4i2, using a subscript notation for partial

derivatives. Hence ,

(27) F = F G 4 - F Hy x z

where G is independent of z and H is independent of x . Differentia t-

ing again , we obt ain

F = F  G + F  H + F Gxy xx xz x l

F = F  G + F  H + F Hyz xz zz z 2

F = F  G + } ’  H + F  G + F  H -xyz xxz xzz xz I xz 2

Together with (27). we now have four equations in G, H, G1, H2 which

can be solved , o b t a i n i n g  an expression for G solely in terms of derivatives

~f G . Since 8G/8z i 0, we can differentiate this expression and thus

obta in the desired equat ton which must  be satisfied by F . (Since it is

a long and tedious calculat ion and the result  contains so many terms ,
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the re is l i t t le reason to include the f ina l equation he r f . Sh o u l d  a n y  t I r i d I r

of this be sufficiently curious to wish to see the complete equation , it

may be obtained by writing the a uthor. )

In spite of this inherent complexity , It is possible to prove a non-

representability theorem , -assuming only C’

Theorem 18. The function F(x , y, z)  xy + yz + xz does not belong to

Proof: We assume that F = f( p(x ,y ) ,  4 ,(y , z)) ,  with f,q’, and 4, differ-

entiable, and obtain

F = f1çi1 
y + z

Fy = f1~2 + f2 ~‘i 
= x + z

F
~~

= f
24,2 = y + x

Then put G(x,y) = q,2 (x , y)/ç~1(x , y) ,  and H(y, z)  4,1(y, z)/4,2 (y, z) to

obta in

(28) x +  z = ( y +  z ) G ( x ,y ) + (y + x) H(y , z)

If we solve this for G we obtain

G(x , ~~ = 
1 - H (y,~ z) 

~ + 
z—yH (y .  z)

y+z y+z

Since the left side is independent of z for each x , and the right side

has the form a(y, z)x + ~3(y, z) ,  it follow s that a(y, z) and ~3(y, z)  are

each independent of z , giving us the relation

(29) G(x ,y)  = a(y)x + ~3 (y)
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Simil arly,  we ca n solve (2 8)  for H to obtain

H(y, z) = 
l-G(x , y )  

~ + x -yG(x ,y )
x + y  x + y

and by a similar argument , fi nd that

(30) H(y,  z)  = y(y)z  + 6(y)

Putting (2 9)  and (30) back iflto (28),  we h-ave

x + y = (y a(y) + 6(y)}x + {y y (y) + ~3(y)}z

+ {a(y) + ‘y (y)}xz + {~ (y) + 6(y)}y -

Since this holds for all x, ~ -and z, it follows that

1 y a(y) + 6(y)

1 = y ‘y(y) + ~3(~~)

0 = a(y) + .y(y)

0 = ~3(y) + 6(y)

which are readily seen to be inconsistent. Accordingly, the assumed

representation of xy + yz + xz cannot hold.

It would obviously be of interest to prove that xy + yz + xz is not

a me m ber of 30 (R 3 ), or of 3 ( D ~~) . More u sefully,  It would be

interesting to obtain generally app1 Ica ble criteria for non-represent-ability,

and to investigate the approximation properties of these classes.

The results of the preceding sections use techniques that are ad

hoc . There are certain common threads which may lead eventually to a

genera l theory : ( i )  the analysis of level sets , (ii) the use of functional

equations a nd inequalities , ( i i i )  the determination of characteristic -auto-

morph isms and (Iv) the use of the associated differential equations. 
- 

-
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The g~ n t ’r i l  problem we are deali ng with is tha t  of f ind ing  s ign i f i can t

c h a r a ct er i z a t i o n s  for the class of funct ions  that ar e representable by a

specif ied forma t , or tha t  may be uni formly  approximated by such func t ions .

The f irst  t echnique , that  of ana lyz ing  level sets , depends upon the recog-

ni t ion  that  we are deali ng with a conventional factoring problem. De-

pendi ng upon the exact nature of the superposition schemata under s tudy,

we have a mapping diagram such as the following

k h g
-
~~~ B

S 

11
where F i s given , and where we are at tempting to decide if there are

maps f , g . h , k lying in certain specific classes of mappings such that

the diagram commutes.  Clearly, if the nature of any  of the component

m aps f , g, h , k force two points of S to have the same image in R

thi s behavior mus t  be imitated by F , either exactly if we are dealing with

me mbership or approximately it we are examining the uniform closure of a

function class.

The method of functiona l equations and inequalities offers promise;

it is well illustrated by the material in Section 6. Here , the nature of the

functiona l format Implied the existence of solutions to certain systems of

equat ions , t h u s  providing necessary conditions for represent -ability.
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However, at present It would seem that  each schemata mus t  be analyzed

independently, and no genera l methods are in sight.

The third method is mathemat ica l l y  attractive , but as yet has

achieved no success. One first seeks to characterize a given class of

funct ions  ~ by th e transformations that  leave it invar iant . For example , 
if

the class 3(R
2) of all nornographic functions F of the form f(~ (x) + 4 , (y) )

is ca rried into i tself  by the following mappings:

F- G where G(x,y) = g(F(x , y ) )

F— G where G(x ,y )  = F(y , x)

F-’- G where G(x,y) = F ( g ( x ) ,y )

If in addition , we specify that 
~ 

contains the function x+ y, the n we

have uni qu e ly  characterized the class ~ . Does this help to settle such

questions as the relative sparsity of ~ as a subset of C[~ ] ? Is there

a similar characterization for the closure of 3 ? Finally, does thi s in

any way permit one to decide if an individual function F
0 

lies in ~

and if not, to determine the distance from F
0 to 

~ , 
or to Identify the

nearest member of 
~ 

?

The last general method deserves somewhat more discussion. As

has been shown In several cases , it Is generally possible to construct

one or more partial differential equations which must be satisfied by any

function F in the function class ~ . (See [17] ) The rea sons for th is

are in part combinatorial. S
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Theorem 19- If F i s a  C function of N variables ,  then in genera l it

IN+k- l  - .b~ . k ess ent ia l ly  different  partial derivatives of order k -

Proof: Let the number in quest ion be A(N , k ) ,  so that  we have A(N , U N

and A( l , k)  = I - A(N, k) is also the number of sequences c = (c 1, c2 .

ck > whe re c1 < c 2 < . . .  < c
k and c . ~‘ (1, 2 N} . Part i t ion 1

the class c of such sequences c according to the value of c
1 so that

= 

~
‘
l 
U (1

2 
U . . .  U 

~
‘N• When c

1 
= 1, the sequence

c ’ = < c2, c3 , . . ,  ck > is k - I long and its terms also lie in (1,2 N} -

Hence , 
~ 

contains A(N, k-I) members . Similarly, if c1 2, C I S  a

k - 1 sequence with term s from {z , 3,..., N ) so that  
~ 2 contains

A( N — 1, k - I) members. Thi s leads to the recursive equation

N
A(N , k) = ~ A(j ,  k -i)

j = l

f rom which the formula A(N , k )  (
N +k _ l )  Is found in the usual  way.

Coroll~~y. If F i s a  C~ function of N variables, then in genera l the

number of essentially different partial derivatives of all orders k for

l < k ~~ m is given by

IN + mB(N , m ) = i  - lm

Suppose now that we are studying a specific function class , for

example , those functions of three variables of the form

— 
(31) F(x ,y , z) f(~ (x ,y ) , 4 ,(y, z))  -

If we differentiate thi s m times , we will obtain B(3 , m) equations , one

tor each of the partial derivatives of F . Each of these equations wil l

— 4 7 -
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involve  ~ r iv ~t iv es of f , ~~ and ci of orders at most m . Since these

~S - r ~ t n cto~ns are f unction s of only two variables , the tota l numbe r of

new in c t i o n s  to a r ise will  be at most 3B( 2 , m) - We now ask if there is

a choice of m such that

B(3 , m) > 3B( 2 , m)
‘p

We f ind  t h a t  B( 3 , 6) - 83 and 38( 2 , 6) 81.

Th u s , if we were to differentiate (31) sIx times , we would have 83

equat ions  inv olving at most 81 different derivatives of 1, q,, and 4,

E l i m i n a t i n g  these , we would be abl e to determine a single relationship

involvi ng al l  or some of the 83 different partial derivatives of F - (In

fact , as indicat ed in Section 4 , one need only differentiate four t imes ,

and the resu l t ing  monstrou s nonlinear different ia l equation can be given

explicitly.

This  is i l lustrative of the general case. Given a specific format for

e xp r ( - s s in g  a fun c t ion  F of N varia bles as a superp osition of r funct ions

of fewe r variables , one may choose a sufficiently large m so that

B (N . m l  —‘ r B(N- 1 , m) ,  and thus (In theory ) arrive at a differential equation

for F -

Sometimes , indeed , more then one equation must be satisfied. For

example , if we are interested in functions of the form F(x , y, z , w) =

f( o(x ,y ) ,  4,(z , w)) ,  then the general method outlined a bove show s that

there ought to be a differential relation Involving at most third order

derivatives of F . In fact , it is ea sily seen that F must obey the

fol lowing system of four second order equations

-48-



F F  - F F  = 0y x z  x y z

F F  - F F  = 0y x w  x y w

F F  - F  F = 0z x w  w x z

F F  - F  F = 0 .Z y w  w y z

As the exam ple s have show n , the diffe rential equations one obtains /
are nonlinear and often of high degree , and in themselves unenlightening .

M oreover , i t  is only fo r funct ions F that  have very smooth representations

that  we can asser t  that  the equat ions are sat isf ied.  Is there any way that

these equat io ns can be used to settle quest ions of continuous represent-

a b d i t y ? For example , we conjectvre that  any C function F which is

of the for m f( ~ (x , y) , ~ (y ,  z I )  wi th  f . ~p and ~ continuous must  in fact

sat i s f \ -  the charac ter i stic 4th order d i f fe re n t ia l  equation for this  family,

a lmos t  ~~erywhere:  One method to approach th is  would be to prove that a

C’ fu nction which  is the uni for m l i m i t  of C~ solutions of the differential

equation must itse lf be ~ solution. However, known results in the theory

- f  nonl i nea r equat ions  do not as yet support th i s .

We also conjecture tha t  the distance from a function G to a function

cla ss t~ on a compact set S can be estimated from below by means of

the  ma x i m u m  of the corresponding different ial  expression , applied to G

on the  set S

R. C. Buck
MRC
Univ . of Wis .
Madison
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20 . ABSTRACT (C ont 5d. )

limit of such functions. The second case-~discussed in Sections 2, 3, 4,- - -—
~~~~~~~~~~~~~~ 

---- -_

‘-~~is also related to the solution of Hilber V s 1 3th problem , and deals with
the format F(x) f(~ ( x ) )  where x lies in an n-cell I and ~ is
a real valued continuous function on I , and I is a function on R
taki ng values in a chosen aormed space ~~. The use of these criteria /
is ill ustrated with several specific funct ions.

Since each format is associated with a specific partial differential
eq uat ion , the results raise questions about the nature of the uni form
closure of the C solutions of such equations. Section 3 may also
have more general interest since it shows that every continuous real

function on an n-cell must  share a certain universal property related
to the metric dispersion of its level sets .
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